
K/W

TECHNOLOGY

TLDR5400/TLDR6400

Vishay Semiconductors

High Intensity LED, Ø 5 mm Tinted Diffused

DESCRIPTION

This LED contains the double heterojunction (DH) GaAlAs on GaAs technology.

This deep red LED can be utilized over a wide range of drive current. It can be DC or pulse driven to achieve desired light output.

The device is available in a tinted diffused 5 mm package with a wide radiation angle.

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- Package: 5 mm

PARTS TABLE

PART

- Product series: standard
- Angle of half intensity: ± 30°

FE	AT	JR	ES

- Exceptional brightness
- · Wide viewing angle
- · Low forward voltage
- 5 mm (T-1³/₄") tinted diffused package
- · Deep red color
- · Very high intensity even at low drive currents
- Categorized for luminous intensity
- Outstanding material efficiency
- Lead (Pb)-free device
- · Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- · Bright ambient lighting conditions
- · Battery powered equipment
- Indoor and outdoor information displays

350

- Portable equipment
- Telecommunication indicators
- General use

	,								
TLDR5400/6400	Red,	Red, $I_V \ge 35 \text{ mcd}$		GaAIAs on GaAs					
ABSOLUTE MAXIMUM RATINGS ¹⁾ TLDR5400/TLDR6400									
ABSOLUTE MAXIMUN PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
Reverse voltage ²⁾		V _R	6	V					
DC Forward current		۱ _F	50	mA					
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	1	А					
Power dissipation		P _V	100	mW					
Junction temperature		Тj	100	°C					
Operating temperature range		T _{amb}	- 40 to + 100	°C					
Storage temperature range		T _{stg}	- 55 to + 100	°C					
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C					

 $\mathsf{R}_{\mathsf{thJA}}$

COLOR. LUMINOUS INTENSITY

Note:

ambient

¹⁾ T_{amb} = 25 °C, unless otherwise specified

²⁾ Driving the LED in reverse direction is suitable for a short term application

Thermal resistance junction/

TLDR5400/TLDR6400

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ¹⁾ TLDR5400/TLDR6400, RED								
PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	UNIT		
Luminous intensity	I _F = 20 mA	Ι _V	35	70		mcd		
Luminous intensity	I _F = 1 mA	Ι _V		3		mcd		
Dominant wavelength	I _F = 20 mA	λ _d		648		nm		
Peak wavelength	I _F = 20 mA	λ _p		650		nm		
Spectral line half width		Δλ		20		nm		
Angle of half intensity	I _F = 20 mA	φ		± 30		deg		
Forward voltage	I _F = 20 mA	V _F		1.8	2.2	V		
Reverse current	V _R = 6 V	۱ _R			10	μΑ		
Junction capacitance	V _R = 0, f = 1 MHz	Cj		30		pF		

Note:

¹⁾ $T_{amb} = 25$ °C, unless otherwise specified

LUMINOUS INTENSITY CLASSIFICATION GROUP LUMINOUS INTENSITY (MCD) STANDARD MIN MAX 35 Tb 50 U 40 80 ٧ 63 125 W 100 200 Х 130 260 Υ 180 360 Ζ 240 480 320 640 AA BB 430 860

Note:

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups in each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag. In order to ensure availability, single wavelength groups will not be orderable.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

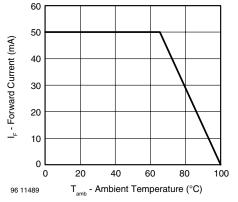
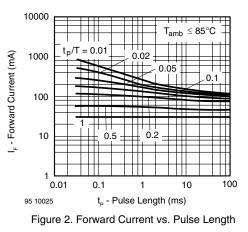



Figure 1. Forward Current vs. Ambient Temperature for AlInGaP

0° 10° 20° 30° Ivrei - Relative Luminous Intensity 40° 1.0 0.9 50° 0.8 60° 70 0.7 80° 0.4 0.2 0 0.2 0.4 0.6 0.6 95 10021

Figure 3. Rel. Luminous Intensity vs. Angular Displacement

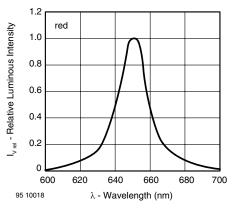


Figure 4. Relative Intensity vs. Wavelength

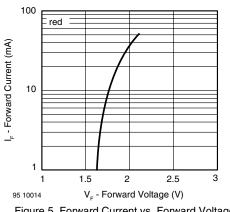


Figure 5. Forward Current vs. Forward Voltage

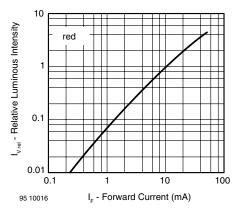


Figure 6. Relative Luminous Intensity vs. Forward Current

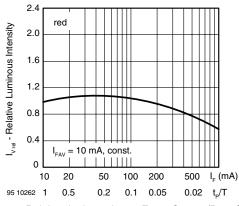
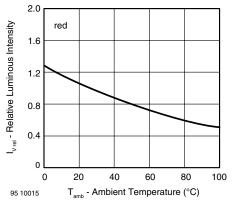
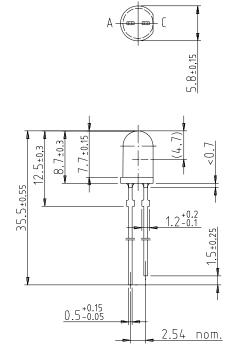
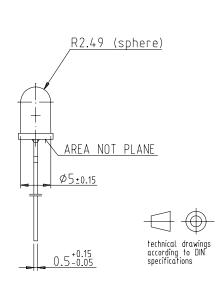


Figure 7. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

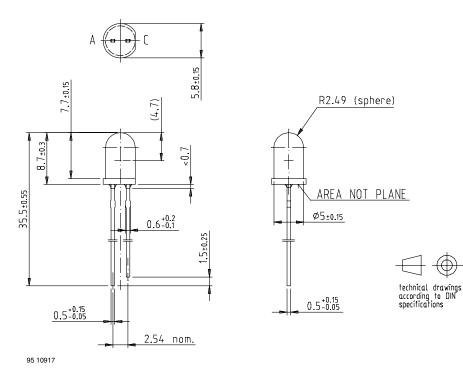



Figure 8. Rel. Luminous Intensity vs. Ambient Temperature


TLDR5400/TLDR6400 Vishay Semiconductors

TLDR5400/TLDR6400

Vishay Semiconductors


PACKAGE DIMENSIONS in millimeters TLDR5400

95 10916

PACKAGE DIMENSIONS in millimeters TLDR6400

Vishay Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.